Lower extremity peripheral arterial disease - lePAD

I can't walk 500 miles

Viet Le, DMSc MPAS PA-C FACC FAHA Associate Professor of Research, Preventive Cardiology PA Intermountain Heart & Vascular; Patients Health First, L.C.

Disclosures

- Relationship with Novartis Pharmaceuticals Corporation, Amgen, Amarin, Bayer, Pfizer, Lexicon Pharmaceuticals, and Idorsia that includes consulting or advising.
- Relationship with Janssen that includes research grant funding paid directly to the research department

Objectives

• Diagnosis, Prognosis, Prevention, and Treatment

- Review peripheral arterial disease and the importance of screening and early intensive management
- Discuss strategies to reduce the risk of amputations and other cardiovascular disease events through lifestyle and pharmacologic treatment.

Acute Coronary Syndrome/Chronic Stable

Α

250x Magnification 20x Magnification FEMORAL CAPILLARY **SMALL ARTERY** ARTERY more than 100 µm 3 to 3 µm 10 mm CD Y WINE DY ARTERIOLE less than 100 μm more than 5 μm CORONARY ARTERY AORTA 25 mm 3 mm

GIFSBOOM

https://www.crossfit.com/essentials/the-heart-part-6-blood-vessel-basics; Lorbeer. 2018. PLoS One. 13(6): e0197559; Dodge Jr. 1992. Circulation. 86:232–246; Paruchuri. 2015. Cardiology. 131:265-272

Coronary Calcium

 $CAC = 0 \rightarrow NO STATIN$

CAC = 1-99 → Favor STATIN

CAC = ≥100 or ≥ 75th Percentile \rightarrow **STATIN**

POPULATION: Framingham (Offspring and 3rd Generation). 50±10 yrs of age. Female

MAJOR CVD included: 1 coronary heart disease (CHD), 2 stroke, and 3 peripheral arterial disease. Additionally, authors included 4 MI, and 5 death from CHD (i.e., fatal coronary event, MI, or cerebrovascular accident [i.e., ischemic stroke, hemorrhagic stroke]).

50.9%.

Hoffmann. JAHA. 2016 Feb 22;5(2):e003144

ABI WORKSHEET

PVR

* The lower of these numbers is the patient's overall ABI. Overall ABI (lower ABI) = _____ Sibley III. 2017. Radiographics. 37:1, 346-357

@VietHeartP

Α

Older: 72 Female: 58% ABI >1.5 excluded

OUTCOMES:

1 all-cause mortality OR severe vascular events 2 myocardial infarction, 3 coronary revascularization, 4 stroke, 5 carotid revascularization, 6 peripheral revascularization, or 7 amputation

Diehm C et al. Circulation. 2009;120(21):2053-2061

@VietHeartP

Α

Older: 72 Female: 58% ABI >1.5 excluded

OUTCOMES:

1 all-cause mortality OR severe vascular events 2 myocardial infarction, 3 coronary revascularization, 4 stroke, 5 carotid revascularization, 6 peripheral revascularization, or 7 amputation

PERIPHERAL ARTERIAL DISEASE

https://lermagazine.com/article/arterial-disease-lower-extremity-implications Accessed 10/19/2022; https://www.pacecvi.com/blog/they-say-amputation-here-at-pace-we-say-second-opinion, accessed 10/20/2022. https://www.amboss.com/us/knowledge/Peripheral_arterial_disease, accessed 10/20/2022

FOURIER

Patients with Peripheral Artery Disease

57%

- Patients between 40-85 yrs of age
- History of ASCVD event
- Fasting LDL-C >70 or non-HDL-C >100
- Fasting Trigs <400

69% 27,564 Intermittent Claudication & Peripheral Revascularization Patients with ABI < 0.85 at Baseline (Median 3.7 years prior) Atherosclerosis Randomized 3.642 Patients with Symptomatic Lower 42% 26% 27% Extremity Peripheral 1517 955 1.044 Artery Disease 1,505 Patients with Symptomatic Lower 39 Extremity Peripheral Artery Disease and no 4% prior MI or Stroke Amputation for Ischemia

An Academic Havearch Organization of Nomen's Hospital and Harvard Medical School

CV Death, MI or Stroke in Patients with and without Peripheral Artery Disease

fourie @VietHeartP

Diagnosis – Have an index of suspicion

PARTNERS Trial – Invited those aged 50-69 yrs w/history of smoking or diabetes to enroll. Evaluated by history and by ABI.

6417 were analyzed based on full records

- PAD was identified in 1865 (**29%**);
 - PAD only 825/1865 (44%), PAD/CVD 1040/1865 (56%
 - Total NEW PAD 823/6417, (13%)
- CVD only 1527/6417 (24%)
- No PAD OR CVD 3025/6417 (47%)

PARTNER COHORT, n=6417

83% of patients were aware of prior PAD Dx. Only 49% of clinicians were aware at baseline

PAD Prevalence

- 8.5 Million individuals in the US >40 years of age are affected
- 14.5% of those >70 years of age in the US have PAD
- Only 10% of PAD patients experience classic claudication
- 40% have variable leg symptom presentation
- 50% do not experience any leg pain (yet 26% CVD events in 5 years)

Risk Factors and treatment targets for PAD

- Smoking
- Diabetes
- Age
- Gender
- Race
- Hypertension
- Hyperlipidemia
- Hyperhomocysteinemia

Α

Screening

- Claudication larger vessels=more forgiving. Low symptom presentation. Partner trial: Of 29% with PAD, only 2% had symptoms
- Age \geq 65 years old
- Age 50–64 years old, with risk factors for atherosclerosis (e.g., diabetes mellitus, history of smoking hyperlipidemia, hypertension) or family history of PAD
- <50 years old with diabetes mellitus and 1 additional risk factor for atherosclerosis
- Individuals with known atherosclerotic disease in another vascular bed (e.g., coronary, carotid, subclavian, renal, mesenteric artery stenosis, or AAA)

Patients at Increased Risk of PAD²

- Age ≥65 years old
- Age 50–64 years old, with risk factors for atherosclerosis (eg, diabetes mellitus, history of smoking hyperlipidemia, hypertension) or family history of PAD
- Age <50 years old, with diabetes mellitus and 1 additional risk factor for atherosclerosis
- Individuals with known atherosclerotic disease in another vascular bed (eg, coronary, carotid, subclavian, renal, mesenteric artery stenosis, or AAA)

History and/or Physical Examination Findings Suggestive of PAD²

History:

- Claudication
- Other non-joint-related exertional lower extremity symptoms (not typical of claudication)
- Impaired walking function
- Ischemic rest pain

Physical Examination:

- Abnormal lower extremity pulse examination
- 🔍 Vascular bruit
- Q Nonhealing lower extremity wound
- Q Lower extremity gangrene
- Other suggestive lower extremity physical findings (eg, elevation pallor/dependent rubor)

ABI WORKSHEET

* The lower of these numbers is the patient's overall ABI. Overall ABI (lower ABI) = Sibley III. 2017. Radiographics. 37:1, 346-357

- Smoking Cessation
- Optimize Diabetes Control
- Blood pressure control
- Lipid lowering therapies
- Structured Exercise Program

@VietHeartP

- Smoking Cessation
- Optimize Diabetes Control in the current era = SGLT2i (e.g., empagliFLOZIN, dapagliFLOZIN; the FLOZINs); GLP1ra (e.g., semaglutide, dulaglutide, etc.) and GIP/GLP1. A1c goal is <6.5%. Teach self-foot examination, consider biannual clinical foot examination.
- Blood pressure control Consider RAASi, ACEi or ARB (HOPE and ONTARGET trials). BP goal is <130/<80.
- Lipid lowering therapies ASCVD Secondary prevention = high intensity statin therapy (Rosuvastatin 20 and 40 mg; Atorvastatin 40 and 80 mg) for <a>>50% reduction of LDL-C from baseline AND LDL-C target of <70 mg/dL.

- Structured Exercise Program
 - Supervised Exercise Program (hospital or outpatient)
 - Standalone vs Part of an established Cardiac Rehab Program
 - Structured Community- or Home-Based Exercise Program

Evidence for benefit from supervised walking therapy:

Meta-analysis of 25 randomized trials of patients with PAD and intermittent claudication (n=1,054). Supervised walking exercise or control (no exercise).

12-26 weeks in duration.

BENEFITS

Maximal treadmill walking distance increased by 180 meters (590 feet or nearly 2 football field lengths), pain-free walking 128 meters (420 feet).

Nearly 3 of 4 patients reported at least 50% improvement, 1 in 5, 100% improvement.

Α

<u>Standalone</u> vs <u>Part</u> of an established Cardiac Rehab Program

- Direct supervision by healthcare providers
- Minimum 30 to 45 minutes per session, at least 3 times/week for 12 weeks.
 - Intermittent bouts of walking → moderate-to-maximum claudication alternating with periods of rest
 - Warm-up and cool-down before exercise

Structured Community- or Home-Based Exercise Program

- Self-directed with guidance, regimen like supervised program
- Counseling and education on how to begin, maintain, progress
- Incorporate behavioral change using health coaching, activity monitors, or both.
- Minimum 30 to 45 minutes per session, at least 3 times/week for 12 weeks.
 - Intermittent bouts of walking → moderate-to-maximum claudication alternating with periods of rest
 - Warm-up and cool-down before exercise

@VietHeartP

Who and How under CMMS

 Table 1: Characteristics of Center for Medicare and Medicaid Services Coverage for Supervised Exercise in Peripheral

 Artery Disease¹²

Components and Requirements of Supervised Exercise Programs for PAD Under CMS

- Exercise must be prescribed by a physician after a face-to-face meeting with the patient that includes counseling on cardiovascular disease prevention.
- Prescribed exercise must consist of exercise sessions three times weekly for 12 weeks.
- An additional 36 sessions may be prescribed, with written justification, after the first 12 weeks are completed and may take place over a longer period of time.
- The exercise sessions must take place in a physician's office or outpatient hospital-affiliated setting.
- Exercise must be delivered by qualified personnel with training in basic and advance life support and exercise therapy for PAD.
- Exercise must be supervised by a physician, physician's assistant, or nurse practitioner/clinical nurse specialist.

@VietHeartF

- Antiplatelet therapy Plaque = potential rupture and fibrin/clots. Either Aspirin 81 mg OR Clopidogrel 75 mg daily is recommended. Consider rivaroxaban 2.5 mg po BID + ASA 81 mg (see Voyager and Compass Trials).
- Claudication reduction and control Cilostazol has been shown to improve walking distance. Dosing is Cilostazol 100 mg po bid, 30 minutes before meals or 2 hours after meals. Supervised exercise programs improve functional status, quality of life, and reduce leg symptoms. Consider structured home-based exercise program with behavioral change techniques.
- Flu Vaccine Protect PAD patients with annual influenza vaccination.

Patient Perspectives

"Each capsule contains your medication, plus a treatment for each of its side effects."

Case

SUMMARY

- PAD has a high prevalence, up to 1 in 3 patient aged 50+ and history of smoking or diabetes.
- Symptomatic PAD is not common. Up to 50% fully asymptomatic.
- Asymptomatic PAD carries a 1 in 4 (~25%) cardiovascular event rate in 5 years.
- ABI is a relatively cheap and sensitive screening tool for identifying PAD, regardless of the presence or absence of symptoms. ABI <0.9 is Abnormal.
- PAD is an amplifier of risk for those with concomitant cardio- and cerebrovascular. Intensify existing ASCVD risk reducing therapies.

Enlist preventive cardiology, vascular medicine, endocrinology, etc. to team-up with you and your patients with PAD.