REVIEW OF ESSENTIAL X-RAY INTERPRETATION SKILLS

THOMAS V GOCKE, DMSC, ATC, PA-C, DFAAPA PRESIDENT & CO-FOUNDER ORTHOPAEDIC EDUCATIONAL SERVICES, INC. BOONE, NC TOM@ORTHOEDU.COM WWW.ORTHOEDU.COM

Faculty Disclosures

Orthopaedic Educational Services, Inc.

Financial Intellectual Property No off-label product discussions

American Academy of Physician Assistants

Financial Splinting/Casting Workshop Director, Guide to the MSK Galaxy Course

- JBJS- JOPA Journal of Orthopaedics for Physician Assistants- Associate Editor
- Americian Academy of Surgical Physician Assistants Editorial Review Board
- Associate Professor, Rocky Mountian Univerity of Health Professions Financial

LEARNING OBJECTIVES

At the end of this lecture attendees will be able to

- Describe general bony anatomy of the musculoskeletal system
- Describe and interpret plain radiographs for the Glenohumeral joint
- Describe and interpret plain radiographs for Acromioclavicular joint
- Describe and interpret plain radiographs of the Ankle joint
- Describe and interpret plain radiographs of the Foot
- Describe and interpret plain radiographs of the Cervical & Lumbar spine

Shoulder

- Radiographs: 3 views
 - Anterior Posterior (AP) View
 - Axillary View
 - Transcapular view
 - "Y" view or Mercedes view
 - Internal External Rotation views (Grashy)

Plain Radiographs:

- X-ray does not look at soft-tissue assessment
- Arthrogram can assess redundant joint capsule and tears in the RTC
- CT scan
 - assess intra-articular and complex proximal humerus fractures
 - Reconstruction vs. thin slices: Ask Radiologist
- <u>Ultra-sound (US</u>):
 - great for soft-tissue masses & RTC tear assessment
- <u>MRI:</u>

MR-arthrogram much better studies for assessment of soft-tissue injuries

Shoulder

Anterior-posterior (AP) View

- Looks at anterior GH joint and AC joint
- Assess Glenohumeral position
- Degenerative changes: AC & Glenoid
- Fractures

<u>Normal findings</u>

- Humeral head and glenoid are generally level with on another
- Humerus overlaps small amount with glenoid "Crescent sign"
- Humeral head apposes Glenoid

Shoulder

Anterior-posterior (AP) View

Anterior dislocation

- Humeral head anterior and inferior to glenoid
- Humeral head looks bigger on AP x-ray

Posterior dislocation

- Humeral head goes posterior to glenoid and looks like GH joint pulled apart
- Loose "Crescent sign" appearance in normal joint
- Humeral head looks smaller on AP x-ray

AP-NORMAL

Anterior Dislocation

Photos courtesy TGocke, PA-C

RADIOGRAPHIC EXAM

- <u>Axillary View</u>
 - Shot thru the armpit
 - Shows humeral head position in glenoid
 - Best able to identify Hills-Sach and bony Bankhart lesions
 - Remember: Coracoid process always points ANTERIOR

RADIOGRAPHIC EXAM

- Transcapular View: "Y" or Mercedes view
 - Formed by the Coracoid process, spine of the acromion and the scapular body
 - Assessment of GH joint dislocation and relocation after reduction
 - Identify Subacromial spurs
 - X-ray shot in the same plain as the scapular body

TRANSCAPULAR VIEWNORMALDISLOCATION

Photos courtesy TGocke, PA-C

© 2020 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

TRANSCAPULAR VIEW "ACROMIAL SPUR"

Subacromial Spurs:

- Osteophyte in the subacromial space
- Decrease space for G-H range of motion
- Subacromial bursae and Rotator Cuff tendon impinge
- Spur graded by width
 - Type 1 flat
 - Type 2 5mm
 - Type 3 > 5mm

TRANSCAPULAR VIEW: "ACROMIAL SPUR"

TYPE 1 - FLATTYPE 2 - 5MMTYPE 3 > 5MM

GLENOHUMERAL JOINT ARTHRITIS

GLENOHUMERAL JOINT ARTHRITIS

Subchondral Bone cyst

Articular surface loss

Inferior Humeral Head Osteophyte

Radiographic Examination X-ray: AP/AXILLARY/GRASHEY

> Findings Subchondral cystic changes Humeral head and Glenoid Fossa Posterior Humeral head subluxation with posterior Glenoid wear pattern Osteophytes inferior Glenoid and Humeral head

Superior Humeral Head migration – RTC tear

GLENOHUMERAL JOINT ARTHRITIS

© 2020 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

ACROMIOCLAVICULAR JOINT ARTHRITIS

© 2020 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

ACROMIOCLAVICULAR JOINT ARTHRITIS

- Commonly affected by traumatic and degenerative conditions
- Chronic degenerative changes result from repetitive activity
 - Osteolysis commonly associated with weight lifting or heavy labor activities
- Symptoms similar to RTC impingement syndrome
- AC joint changes cosmetic appearance 2nd to osteophyte formation
- Contributing Factors:
 - Repetitive overhead activities
 - Wt lifters Swimmers Throwers

ACROMIOCLAVICULAR JOINT ARTHRITIS

Radiographs

- AP/Axillary/Outlet
 - Narrowing AC joint
 - Osteophytes more common inferior vs. superior
 - Old fx
- MRI/CT not always necessary

SUPRACONDYLAR HUMERUS FX

Epidemiology

- 30% all Elbow fx
 - Supracondylar
 - Single Column fx- Lateral
 - Bi-column fx- heavy damage
 - Young men & older female
 - Falls from standing height/high energy
- X-ray Images
 - AP, and Lateral
 - Comminuted, intra-articular usually gets a CT Scan

© 2020 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

GENERAL ELBOW ANATOMY

- Ligament
 - Radial Collateral
 - Ulnar Collateral
 - Annular (radial head)
- Tendon
 - Bicep—distal insert radial tuberosity
 - Triceps
 - Coranoid Process

RADIAL HEAD FX

Radiographs

- AP, lateral & radial head view
 - Radial head view: oblique lateral
 - Helps see subtle fx radial head
 - Check for Fat Pad signs
 - Fx Tolerances: Rule of 3's (Radin & Riseborough, JBJS-A, 1966)
 - 1/3 radial head fx
 - 3mm displacement/diastasis
 - >30 degrees angulation
- CT Scan
 - Needed with comminuted fx radial head
 - Helps with surgical preplanning

CARPAL BONES

Wrist (Carpal bones)

• X-rays

- PA, Lateral, Oblique, Clenched fist view and Snuffbox view
- Clenched Fist view:
 - Adds stress to Scapholunate ligament looking for instability
- Snuffbox view:
 - Essential for identifying fx in carpal scaphoid

Picture courtesy T Gocke, PA-C

DISTAL RADIUS & ULNA

Radiographs

- Radial Inclination
 - Normal: 23 degrees (< 5 degrees)
- Radial Height
 - Normal10-12 mm (ulnar negative)
 - Variant <5mm
 - Fx: ulnar positive (loose radial height)
- Radial articular surface
 - Normal :Congruent
 - Variant: <2mm step-off
- Palmar Tilt
 - Normal 10 degrees

Radial Height

Volar/Palmar Tilt

Pictures courtesy T Gocke, PA-C

RADIOLOGY REVIEW

Normal Carpal bone anatomy

Parallelism –

• 2mm width between carpal bones

Symmetric appearance

 Capitolunate joint sets standard for Carpal joint symmetry

Carpal Arcs

- I: Convex curve Scaphoid/Lunate/Triquetrum
- II: Concave curve Scaphoid/Lunate/Triquetrum
 - Between proximal & Distal Carpal rows
- III: Convex curve Capitate/Hamate

DISTAL RADIUS FRACTURES

General:

Distal Radius Fx names

- Colles' fx
- Chauffer's fx
- Smith's fx
- Die Punch Fx

• Barton's fx

- Description Dorsal displaced, extraarticular Radial Styloid fx Volar displaced extra-articular
- Depressed intra-articular distal radius fx into Lunate fossa

Intra-articular Radiocarpal fxdislocation w/ volar or dorsal displacement

FRACTURE DESCRIPTION

esy TG

os co

Fx location

- Open v. Closed:
 - Gustilio-Anderson classification
- Neurovascular status
- Angulation: direction fx apex
- Displacement vs. Non-displaced
- Comminution
- Impaction
- Rotation
- Articular extension

DISTAL 1/3 RADIUS FRACTURES

Colle's Fracture

- Extra-articular
- Dorsal fx line
- Dorsal displacement
- Dorsal comminution
 - Elderly
 - Osteoporosis
- Hand /wrist follows radius
- Radial deviation
- Prominent ulna
- Mechanism
 - Fall on flexed wrist

Picture Courtesy TGocke, PA-C

Picture Courtesy TGocke, PA-C

DISTAL RADIUS FRACTURES

Colles Fracture

- Lateral X-ray wrist
 - Loss volar/palmar tilt
 - Dorsal cortex comminution
 - Hand follows distal radius fx fragment

X-ray courtesy Tom Gocke, PA-C Library

CARPAL BONES INJURIES

© 2020 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

CARPAL BONES

Wrist (Carpal bones)

- X-rays
 - AP, Lateral, Oblique, Clenched fist view and Snuffbox view
 - Clenched Fist view:
 - Adds stress to Scapholunate ligament looking for instability
 - Snuffbox view:
 - Essential for identifying fx in carpal scaphoid

Picture courtesy T Gocke, PA-C

CARPAL BONE INJURIES

Scaphoid Fx

Radiology:

- Snuffbox view
 - Suspect scaphoid fx, snuffbox pain, FOOSH
 - scaphoid view: 30 degree wrist extension, 20 degree ulnar deviation
 - negative x-ray & high suspicion for fx: repeat 14-21 days

Photo courtesy T Gocke, PA-

CARPAL BONE INJURIES

Scapholunate Ligament Injury

- Radiology
 - X-ray views: AP, Lateral, Oblique, Scaphoid, Clench-Fist
 - AP x-ray
 - SL gap > 4mm clenched fist view (Terry Thomas sign)
 - Dorsal & volar margins distal Lunate proximal Capitate are not superimposed (normal)

Widening Scapholunate joint

Picture courtesy I Gocke, PA-0

ANKLE RADIOGRAPHS

- Radiographs
 - AP Lateral and Mortise views
 - Mortise view: ankle internally rotated 15 degrees
 - Talar dome resides under the plafond (AP & lateral)
 - Mortise appears symmetric
 - Radiographic landmarks
 - Ankle (medial) clear space
 - Tibiofibular clear space
 - Tibiofibular overhang
 - Talocrual angle

- Ankle (medial) clear space
 - Normal range <4 mm between tibia
- Tibiofibular clear space
 - Normal range <5 mm between tibia & fibula

- Talar Tilt
 - Parallel lines draw plafond and articular surface talus at ankle mortise
 - Normal < 10 degrees
 - Abnormal

- Tibiofibular overlap
 - Normal range >10 mm between tibia & fibula
 - Fibular notch

- Talocrual Angle
 - Normal measurement 8-15 degrees
 - Strong indicator of syndesmosis disruption, because the fibula will be shortened and externally rotated
 - Talocrual Angle should be compared to the contralateral normal side

Talocrual Angle

© 2020 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED

Intermalleolar line

- Radiographs
 - AP Lateral and Mortise views
 - Mortise view: ankle internally rotated
 15 degrees
 - Check medial Clear space
 - Normal mortise configuration
 - Talar dome fits under Plafond in ALL views

GRAVITY STRESS VIEW ANKLE

Gravity Stress View Ankle

- MCS >4mm on gravity stress view
- unstable ankle in supination-external rotation injury
- Deltoid ligament injury
- Positive findings related to need for surgical stabilization ankle fx [Weber B]

Images courtesy Michael J. Fuller-WikiRadology

- Foot: AP, LATERAL & OBLIQUE
 - WT-BEARING –best to assess:
 - Hallux valgus angle (HVA)
 - Intermetatarsal angle (IMA)
 - CHARCOT foot
 - Lis-franc pain/swelling allows

NORMAL ALIGNMENT

- 1ST MT -1ST CUNEIFORM
- 2^{ND} MT 2^{ND} CUNEIFORM
- 3RD MT 3RD CUNEIFORM
- 4TH & 5TH MT CUBOID

Photos courtesy TGocke, PA-C

- Lateral & Harris heel views
 - Calcaneal Fracture
 - Loss Bohler's angle and angle of Gissane
 - Harris/Beeth heel view Calcaneal fx
 - CT scan w/ recon images best for calcaneous fx

Harris/Beeth views

- Harris/Beeth heel view:
 - Best detect Calcaneal fxs
- Normal: no varus or valgus angulation
- Abnormal:
 - Loss length Calcaneous
 - Varus/valgus deformity
 - Hind foot appears deformed
- CT scan w/ recon images best for calcaneous fx

TAKE HOME POINTS

- KNOW WHAT NORMAL LOOKS LIKE
- At least 2 views of every joint/bone you x-ray (PA & Lateral)
- Elbow- look for Radiocapitellar line, anterior Humeral line & Fat pad sign
- Wrist: Radius lines and Gilula's arch's, look for wide Scapholunate
- Ankle look for Mortise widening
- Foot Make sure the cuneiforms and the Metatarsals line up
- Spine Lateral looking for disc space narrowing and loss of lordosis

REFERENCES

- Ehrlichman LK, Gonzalez TA, Macaulay AA, Ghorbanhoseini M, Kwon JY. Gravity Reduction View: A Radiographic Technique for the Evaluation and Management of Weber B Fibula Fractures. Arch Bone Jt Surg. 2017;5(2):89-95.
- Pitakveerakul A, Kungwan S, Arunakul P, Arunakul M. Radiographic parameters in gravity stress view of the ankle: Normative data. *Foot Ankle Surg*. 2019;25(6):819-825. doi:10.1016/j.fas.2018.10.011