FINGER INJURIES IN PRIMARY CARE

Tom Gocke DMSC, PA-C
Orthopaedic Educational Services, Inc
Blowing Rock, NC
www.orthoedu.com
Faculty Disclosures

• Orthopaedic Educational Services, Inc.
 Financial
 Intellectual Property
 No off-label product discussions

American Academy of Physician Assistants
 Financial
 Splinting/Casting Workshop Director, Guide to the MSK Galaxy Course

• JBJS- JOPA Journal of Orthopaedics for Physician Assistants- Associate Editor

• American Academy of Surgical Physician Assistants – Editorial Review Board
LEARNING OBJECTIVES

Attendees will be able to

• Recognize and treat Mallet finger injuries
• Recognize and treat adult Trigger finger
• Recognize and treat Subungual Hematoma & Nail bed injuries
• Recognize and treat Superficial Finger infections
 • Paronychia
 • Felon
 • Abscess
• Recognize and treat Herpetic Whitlow
MALLET FINGER DEFORMITY
Epidemiology

- “Baseball Finger”
- 2 types injury: Soft tissue tendinous vs. Bone avulsion fracture

Pathophysiology

- Occurs 2nd to disruption of terminal extensor tendon @ insertion into distal phalanx
- Traumatic blow tip of finger causing eccentric flexion @ DIP jt.
- Laceration dorsal finger over area to EDC insertion into distal phalanx
- All injury mechanisms result in droop at DIP jt.

MALLET FINGER DEFORMITY

Presentation:
• obvious droop deformity DIP jt.
• Swelling & tenderness dorsal DIP jt. region
• Inability to actively extend finger @ DIP jt.
• Traumatic injury

Radiology

• X-ray views AP, Lateral & Oblique finger
 • Alternative: AP, Lateral & oblique Hand
• Soft tissue Mallet finger – negative x-ray findings
• Boney Mallet Finger
 • Size bone fx/avulsion variable
 • >25-50% joint surface involvement consider surgery
 • Volar subluxation body Distal Phalanx

Treatment: Emergent care

- Soft-tissue or Bony injury
 - Non-displaced bone injury <50% articular surface
 - Splint injuries in extension DIP jt.
 - Avoid hyperextension & skin blanching
 - Allow free movement @ PIP jt.
- Must wear splint 6-8 weeks to achieve adequate healing
- Remove daily to minimize skin issues
- RICE
- Analgesia

Wieschhoff GG, Sheehan Se, Wortman JR, Et Al, Traumatic Finger Injuries: What the Orthopaedic Surgeon Wants to Know, Radiographics, 2016; 36(4):1106-1128

MALLET FINGER

Photo courtesy TGocke, PA-C

Photo courtesy TGocke, PA-C

© 2020 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED
Epidemiology

• Typically affects pts with Diabetes mellitus (DM) > than non-Diabetics
• 5-20% onset Diabetics (10% lifetime occurrence)
• 1-2% non-diabetics (2-3% lifetime occurrence)
• Correlation between age and duration of DM
• Diabetics with HbA1c > 7% more likely develop Trigger Finger
• Duration of Diabetes and level of HbA1c control has direct impact development and recurrence of Trigger finger
• High risk developing Trigger Finger with hx of Inflammatory Arthritides
• Affects women > men
• Thumb, Middle & ring fingers most commonly affected

Giugale JM, Fowler JR, Trigger Finger-Adult and Pediatric Treatment Strategies, Ortho Clinic, North America 2015;46:561-569
Etiology

• Trigger finger occurs as a result of;
 • Chronic repetitive friction between flexor tendon and A1 pulley
 • FDS/FDP provide a mechanical strength advantage resulting in higher stress on flexor tendon and increased incidences Stenosing Tenosynovitis

Pathophysiology

• Chronic Hyperglycemia creates cross-links between collagen molecules impairing degradation and results in a build-up in the tendon sheath that surrounds the Flexor tendon
 • Histologic analysis of tissues in Trigger Finger reveals fibrocartilaginous metaplasia, disrupted fibers with hypercellular and an increased # on chondrocytes.
 • There are no inflammatory cells or synovial proliferation
 • Findings are consistent with tendinopathy
 • A1 pulley shows signs of thickening and stiffness on Ultrasound

Giugale JM, Fowler JR, Trigger Finger-Adult and Pediatric Treatment Strategies, Ortho Clinic, North America 2015;46:561-569
Clinical Presentation

• Finger stiff, Painful with motion and Locked position
• Nodule @ A1 pulley (Palmar flexor crease)
• Duration DM, Age & Glucose control contributes to severity of symptoms
• Reflects systemic nature of disease and correlation of DM and Trigger Finger

• Women > Men, can be bilateral & multiple fingers
• Duration DM, Age & Glucose control contributes to severity of symptoms
• Reflects systemic nature of disease and correlation of DM and Trigger Finger

• DM contributes relationship between Trigger Finger and Carpal Tunnel Syndrome, de Quervain’s Tenosynovitis and Dupuytren’s Disease

Giugale JM, Fowler JR, Trigger Finger-Adult and Pediatric Treatment Strategies, Ortho Clinic, North America 2015;46:561-569
<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Pain with Flexion, No mechanical symptoms</td>
</tr>
<tr>
<td>1</td>
<td>Uneven Motion during Flexion/Clicking</td>
</tr>
<tr>
<td>2</td>
<td>Locked digit that is actively corrected</td>
</tr>
<tr>
<td>3</td>
<td>Locked digit that is passively corrected</td>
</tr>
<tr>
<td>4</td>
<td>Locked digit, uncorrectable/fixed flexion contracture</td>
</tr>
</tbody>
</table>

Quinnell R, Conservative management of trigger finger, Practitioner 1980;224:187-190
Non-operative Treatment

- Splints (sole joint) 6-10 weeks full time (nighttime), Variable results (Lundsford 2019)
- NSAIDS- low efficacy 2nd to non-inflammatory nature Trigger Finger
- Improved Control Hyperglycemia improves outcome
- Steroid Injection Mainstay of Treatment for Trigger Finger (DM vs. Non-DM patients)
 - Ultrasound guided injection (Hansen 2017)
 - 70% accuracy intra-synovial injection
 - Cure Rate: 60-90%
 - Intra tendon sheath vs Extra Tendon sheath injection
 - Better results with extra sheath injection (Taras 1998)
 - Repeat Injections (Dardas 2017)
 - 39% pts with DM have 2nd or 3rd injection & long-term relief
 - 50% got relief of symptoms > 1 year
Complications for Steroid Injection
• Injection site pain
• Fat Atrophy
• Cellulitis
• Skin Pigment Change
• Tendon Rupture
• Elevation Blood Sugar - ranges from 2-5 days elevated BS

Giugale JM, Fowler JR, Trigger Finger-Adult and Pediatric Treatment Strategies, Ortho Clinic, North America 2015;46:561-569
FINGERTIP INJURIES

• Subungual hematoma
 • Results from blunt trauma to the fingertip
• Displaced fx distal phalanx – open fx
• Matrix trauma results in bleeding under the nail

• Presentation
 • Swollen
 • Throbbing
 • Painful

• > 50% area nail
 • remove nail plate & repair nail bed
 • periosteal elevator aids in nail removal
• Preserve nail plate to replace into eponychium
 • Aluminum or petroleum gauze
• Copious lavage if open fx
• Use absorbable suture to repair wound
 • 6-0 absorbable suture
 • Wound glue - Dermabond
• Stabilize open fx as needed
• Check Tetanus status and Abx prophylaxis
Decompression Subungual Hematoma

- Hematoma < 50 % area nail
 - decompress with heated paper clip, electrocautery
- Drill: 18 Gauge needle or #11 Scalpel Blade
- Soak warm H2O daily to facilitate continued drainage
- Mild compression bandage minimizes fluid accumulation

• Nail plate/matrix avulsion
 • High energy injury to remove all or portion of nail
 • Distal Phalanx fx possible
 • Associated nail-bed laceration or avulsion germinal matrix
 • Concerns for long-term nail deformities
• **Nail Avulsion complete**
 • Germinal matrix injured
 • Higher risk nail deformities
 • Increased chance nail bed laceration
 • Good chance no nail returns
 • Granulation healing
 • Tetanus and abx prophylaxis
Nail Avulsion Partial

- Germinal matrix injured
- Higher risk nail deformities
- Increased chance nail bed laceration
- High risk distal phalanx fx
- High risk extensor tendon laceration (Mallet deformity)
- Granulation healing & primary repair lacerations
- Splint immobilization
- Wound re-checks
- Tetanus and abx prophylaxis
NAIL AVULSION INJURIES

Open Fx

Picture courtesy T Gocke, PA-C

Nail Avulsion

Picture courtesy T Gocke, PA-C

© 2020 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED
Nonoperative Treatment

• Healing by secondary intention – few negatives
 • Simple technique – wound granulation
 • Kids & adults: no bone or tendon exposed
 • < 2cm of skin loss
 • Begin early ROM finger
 • Fingertip protector device
 • 3-5 weeks for tissue re-growth

• Wound closure less likely due to tension resulting in finger tissue loss
Operative Treatment

• Primary tissue closure
 • Less likely due to wound tension 2nd tissue loss
• Guide
 • Finger amputation with exposed bone
 • Ability to rongeur bone proximally below adequate tissue sleeve
 • Avoid compromising bony support to nail bed
NAIL AVULSION INJURIES

Treatment: Operative

• Primary closure (revision amputation)
 • fingertip amputation with exposed bone and the ability to rongeur bone proximally without compromising bony support to nail bed
• Ablate remaining nail matrix
 • prevents formation irregular nail remnants
• Flexor or extensor tendon insertions cannot be preserved, disarticulate DIP joint
• Transect digital nerves and remaining tendons as proximal as possible
• Palmar skin advanced over bone and sutured dorsal skin
NAIL AVULSION INJURIES

Complications:

• Infections
• Hypersensitivity @ fingertip
• Decreased function finger
• Hook nail deformity
• Flap failure
 • Inadequate arterial flow & venous outflow
 • Vasospasm leads to thrombosis at anastomosis site
SUPERFICIAL FINGER INFECTIONS

- Abscess
- Acute paronychia
- Chronic Paronychia
- Felon
• Usually follows puncture wound
• Pain, swelling, erythema, fluctuance
• Common organism: *Staph aureus*
• Aspirate/I&D:

 Gram stain, culture & sensitivities

 LABS: CBC, ESR, CRP, I

• Incision and drainage:

 Wound left open

 Soaks and dressing changes

• Antibiotics

 • A*cephalosporin, doxycycline, TMP/SMX, Clindamycin
ACUTE PARONYCHIA

Epidemiology
- Superficial Infection
- Acute onset
 - Inflammation nail fold w & w/o abscess
 - Acute – single bacteria
 - Children- mixed oropharyngeal flora
 - Diabetes- mixed bacteria
- Nail trauma: cuticle, Nail fold
- Trauma can lead to bacterial infection
ACUTE PARONYCHIA

- Factors affecting Superficial
 - ARTIFICIAL NAILS
 - MANICURE/PEDICURE
 - HANG NAIL/ INGROWN NAILS
 - OCCUPATIONAL HAZARDS (DISHWASHER)
 - NAIL BITING

- Symptoms
 - Erythema
 - Swelling nail fold
 - Tender nail fold
 - Abscess?

© 2020 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED
ACUTE PARONYCHIA

- **Organisms**
 - Staph / Strep
 - Polymicrobial (Oral Flora, anaerobes) – DM, Drug use, immunocompromised
 - Pseudomonas – green color nail bed (rare)
 - MRSA

- **Treatment**
 - Mild cases – Warm soaks multiple time daily
 - Abscess- Mechanical drainage
 - Antibiotics not necessary
 - Immunocompromised – consider antibiotics
ACUTE PARONYCHIA

- Elevation of paronychial fold without incision
- Eponychium involved → remove nail base
- Incise at right angles to nail fold
- Packing x 24 - 48°
- Warm water soaks and antibiotics
CHRONIC PARONYCHIA

Epidemiology

• multiple organisms, > 6 weeks recurrent infections, chemical
 • Candida Albicans
 • Occupational, chronic water exposure & irritant acid/Alkali Chemicals

Risk Factors

• Diabetes, psoriasis, chronic steroid use
• Retroviral meds

Exam

• Nail Plate HYPERTROPHY
• NAIL FOLD BLUNTING & RETRACTION DUE TO REPEAT INFLAMMATION
• PROMINENT TRANSVERSE RIDGES NAIL PLATES
TREATMENT

Non-op:
- Warm soaks, antifungal meds, Limit wet exposures

Operative:
- Marsupialization: excise dorsal eponychium to germinal matrix
- Failed Conservative treatment
Epidemiology

• Any injury to fingertip can create source for Felon to develop
• Common Causes
 • Puncture Wound
 • Untreated Paronychia – common cause
 • Foreign Bodies
• Staphylococcus aureus – most common organism
 • Consider Streptococcus species
 • Consider Eikenella corrodens for bite wounds & immunocompromised

© 2020 ORTHOPAEDIC EDUCATIONAL SERVICES, INC. ALL RIGHTS RESERVED
Pathophysiology
• Defined as Subcutaneous infection involving the pulp of fingertip
• Pulp has many compartments separated by fibrous septae
• Swollen pad/Septae create pressure and cause pain
 • Can Contribute to:
 • Tissue Necrosis
 • Osteomyelitis
 • Pyogenic Flexor Tenosynovitis
Clinical presentation

- Erythema
- Intense throbbing
- Tense swelling
- Volar Pulp pain
- NO swelling proximal to DIP F felon contained within pulp
FELON TREATMENT

• **No abscess**
 - Warm soaks
 - Oral ABX – cover for Staph & Strep
 - First Generation Cephalosporins
 - Amoxicillin/Clavulanate
 - TMP/SMX

• **Abscess**
 - High lateral Incision
 - not crossed DIP Extensor crease
 - ≤ 3 mm from nail border
 - Blunt dissection of septae
 - No proximal probing
 - Warm water soaks. Packing and antibiotics?
Epidemiology

• Viral infection of skin around fingertip
• Inoculation through broken skin
• Prodromal pain
• Vesicles Clear fluid-erythematous base
• Appears 3-4 days after inoculation
• Recurrence rate 20-50%

Clinical Presentation

• Prodromal symptoms: burning, itching 2-3 days prior to eruption followed by painful vesicles
• Redness & pain
• Looks Similar to Acute Paronychia
Treatment

- *Herpes Simplex Virus (HSV)* 1 or 2
- Primarily Clinical Diagnosis
- Tzanck smear / culture for diagnosis
- Reduce transmission
- Pain control
- Oral Antiviral drugs
- Resolves 21 days?
• Surface anatomy key to accurate diagnosis
• Evaluate Flexor/Extensor mechanism
• Kanavel Signs and role in diagnosing flexor tendon infections
• High suspicion for infection:
 • Animal bites, human bites, bunch ("fight-bite") injuries
• High Pressure Injections injuries need emergent attention
• Think beyond local injury site
REFERENCES

• Wang Q, Johnson BA, Fingertip Injuries, Am Fam Physician 2001;63(10):1961-6

© 2020 ORTHOPAEDIC EDUCATIONAL SERVICES, INC ALL RIGHTS RESERVED
REFERENCES

• Fastle RK, Bothner J, Subungual Hematoma, UpToDate
 www.uptodate.com/contents/subungual-hematoma, accessed November 2, 2019