Let Me Give You A Hand in Diagnosing and Managing Upper Extremity Injuries and Conditions

Karen M. Myrick, DNP, APRN, ANP-BC, FNP-BC, APRN

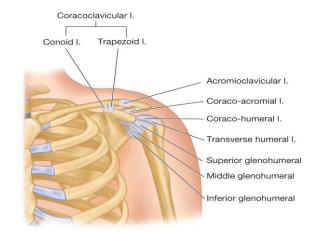
Nurse Practitioner

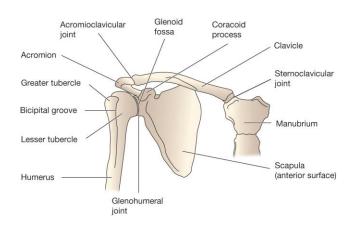
Objectives

- Learners will be able to describe common upper extremity conditions and injuries.
- Learners will be able to identify important components of the patient's history that are key to arriving at accurate diagnoses for upper extremity conditions and injuries.
- Learners will describe sensitive and specific physical examination techniques for patient's with upper extremity conditions and injuries.

Conflict of Interest

I have no conflicts of interest to disclose


Shoulder

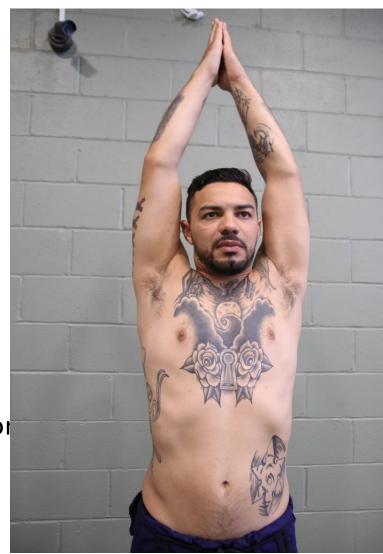


OVERVIEW OF ANATOMY AND PHYSIOLOGY OF THE MUSCULOSKELETAL SYSTEM

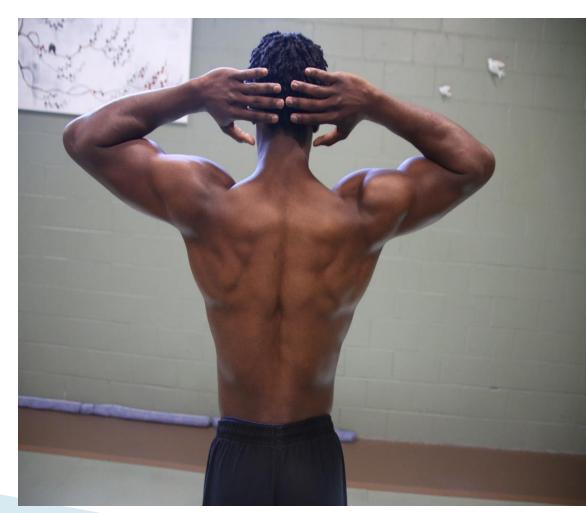
THE SHOULDER

- Structure and Function
 - The shoulder has a large range of motion and is reliant upon the soft tissues to provide stability.
 - Responsible for moving the upper extremity in space. It serves important functions of daily living (bathing, feeding oneself, recreational and sports activities such as throwing).
- Bones and Ligaments
 - Major bones and joints of the shoulder.
 - Major ligaments of the shoulder.

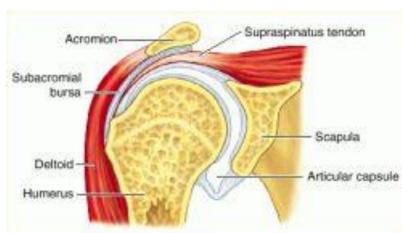
History


- Chief complaint
 - Acute or chronic
 - Pain or instability
- Patient's age
 - Younger
 - Older

Physical Examination


Inspection/Palpation

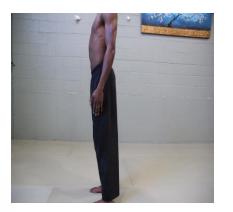
- Anterior view
 - Look for abnormal contours and bony prominences
 - AC separation
 - Prominent distal clavicle
 - Anterior shoulder dislocation
 - Prominent acromion and anterior fullness of the deltoid


Inspection / Palpation (Cont.)

- Posterior View
 - Note symmetry
 - Look for atrophy
- AC Joint
 - End of clavicle

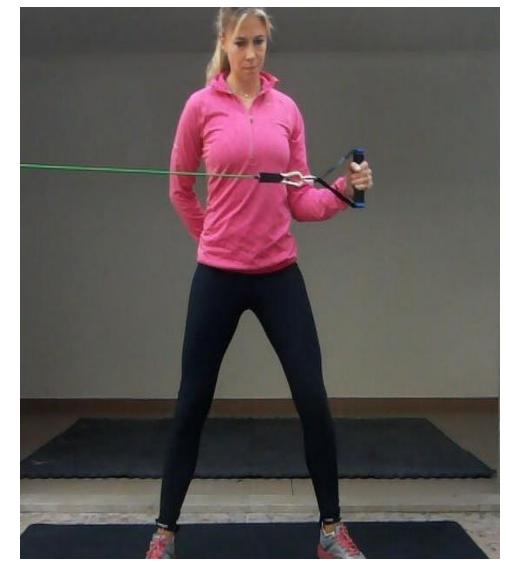
Inspection / Palpation (Cont.)

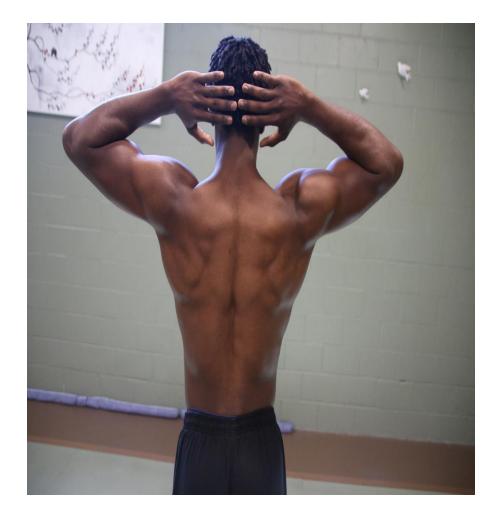
- Subacromial Bursa
 - Palpate anterolateral portion of acromion, moving toward the deltoid until you feel the sulcus



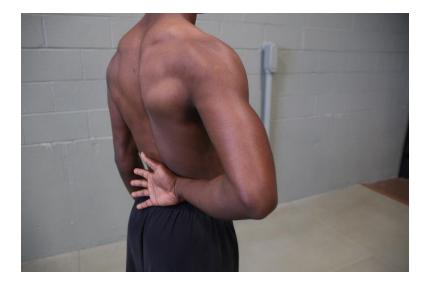

 Long Head of Biceps Tendon
 Palpate over the humeral head in region of the bicipital groove

Range of Motion

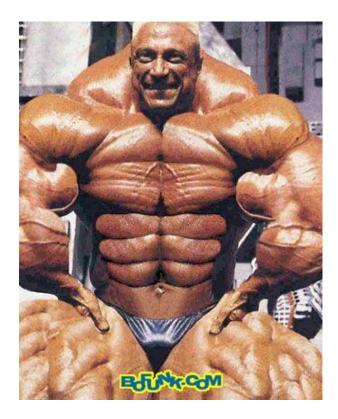

- Flexion :
 - Zero Starting Position
 - Normal = 160
 180 degrees


Range of Motion (Cont.)

- External Rotation, Arm at Side
 - Zero starting position arm held against thorax, elbow flexed to 90, forearm parallel to saggital plane
 - Measure by maximum outward rotation of arm
 - DJD and Adhesive capsulitis commonly have decreased ER


Range of Motion (Cont.)

- External Rotation, Arm Abducted to 90
 - Zero starting position, arm abducted 90, aligned with the plane of scapula, elbow flexed to 90, forearm parallel to floor
 - Measure by how many degrees the forearm moves away from the floor


Internal Rotation

 Evaluate patient's posterior reach, noting highest midline spinous process that can be reached by hitchhiking the thumb

Muscle Strength Testing

Supraspinatus

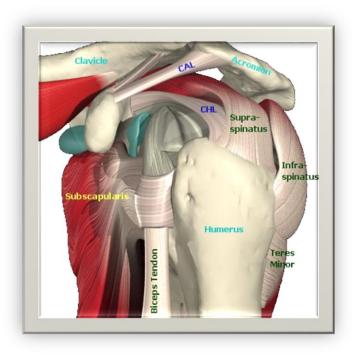
- 90 degrees abduction, 30 degrees forward flexion, and internal rotation. Elbow extended and thumb down
- Push down, patient resists

Infraspinatus and Teres Minor

- Arm at side and externally rotated to 30 degrees, flexed elbow
- Apply pressure to forearm and resistance to external rotation

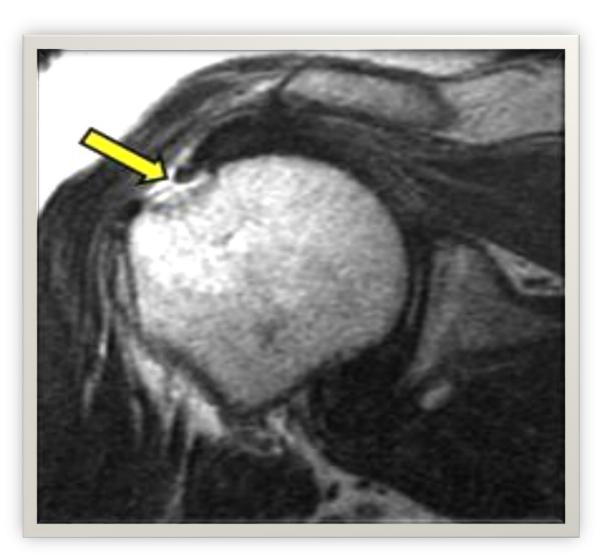
Subscapularis

- Lift off test
- Hand behind back, palm out
- Lift away against resistance

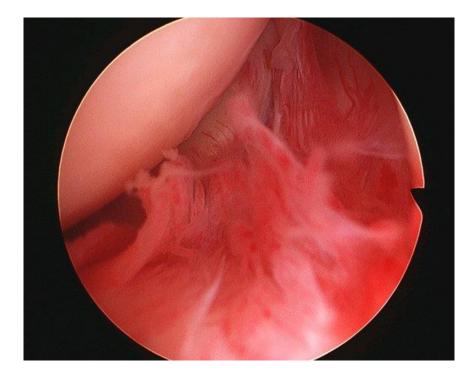


Shoulder pain

• Wide variety of differential diagnosis


- Focus on adhesive capsulitis and rotator cuff tear
- What are the keys to differentiation?

Rotator Cuff Tear



MRI Image of a Rotator Cuff Tear

Arthroscopic image of Adhesive Capsulitis

History – Mechanism of injury

Rotator cuff tear

- Adhesive capsulitis
- Injury •
- Overuse

• No known mechanism

History – Past medical history

Rotator Cuff Tear

Adhesive Capsulitis

• None pertinent

- Diabetes
- Female

History - Onset

Rotator Cuff Tendinitis

Adhesive Capsulitis

- Insidious
- Sudden

- Insidious
- Suddenly worse

Physical examination

- Rotator cuff tear
- Unable to raise arm actively, passive ROM is full

- Adhesive capsulitis
- Active and passive ROM is equal

Imaging?

• Rotator cuff tear

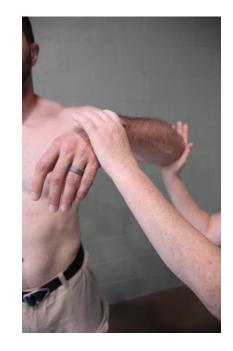
• Adhesive capsulitis

• MRI

• Not necessary

Treatment

• Rotator cuff tear


• Adhesive capsulitis

Special shoulder tests

- Hawkins
- Neer
- Drop arm
- Empty can
- Infraspinatus

Hawkins Impingement Sign

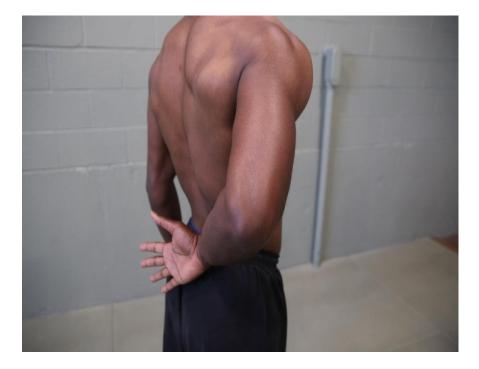
- Elevate shoulder to 90 degrees, flex elbow to 90 degrees, and place forearm in neutral
- Support arm and then internally rotate humerus
- Pain during this maneuver is a positive test indicating possible inflammation or rotator cuff tear

Neer Impingement Sign

- Elevate arm in forward elevation
- Depress scapula with other hand
- Pain may indicate possible inflammation
 - or rotator cuff tear

Drop Arm Sign

- Patient fully abducts arm to shoulder level (90 degrees) and lower slowly
- If patient cannot hold arm fully abducted at shoulder level or cannot control lowering arm = positive test (rotator cuff tear)

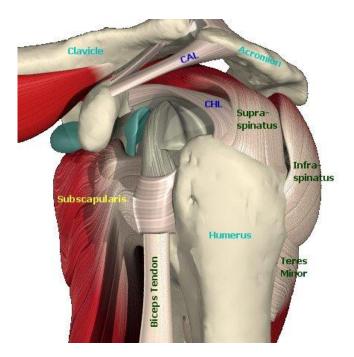

Empty Can Test (Supraspinatus Strength)

- Elevate arms to 90 degrees and internally rotate arms with thumbs pointing down.
- Ask the patient to resist you as you place downward pressure on arms
- Weakness = positive test (possible rotator cuff tear)

Belly press or lift off

• Tests subscapularis

Infraspinatus Strength Test


- Arms at sides and flex the elbows to 90 degrees with thumbs turned up
- Provide resistance as the patient presses the forearms outward
- Weakness = positive test (possible rotator cuff tear or bicep tendonitis)

Shoulder

- Rotator cuff tendinitis
- Impingement syndrome
- Osteoarthritis
- Instability
- A-C separation
- Clavicle fracture

Rotator Cuff Tendinitis and Impingement

Definition / Background

- Inflammation of the tendons of the rotator cuff
- Continuum of tendinitis to tear
- Result of abduction and extreme external rotation and overuse

Clinical Symptoms

- Pain
- Decreased throwing velocity and accuracy
- Awakening with pain
- Progression to ROM decrease
 - Especially internal rotation
 - Abduction with external rotation

Tests

- Physical examination
 - ROM
 - Strength
 - Hawkins
 - Neer
- Diagnostic tests
 - X-rays
 - MRI

Adverse Outcomes

 Inability to practice, live without discomfort and play

Treatment

- Active rest
- Rotator cuff and peri-scapular strengthening
- Flexibility
- Core

Referral Red Flags

- Athletes
- Comfort level
- Not improving
- Weakness with muscle strength testing, likely rotator cuff tear

Osteoarthritis

Definition/Background

- Destruction of joint cartilage with loss of joint space
- Generally over 50

Clinical Symptoms

- Diffuse or deep pain
- Progressive ROM decrease
- Painful and difficult ADL's

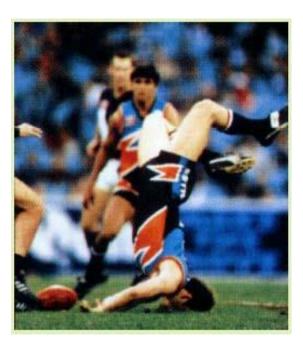
Tests

- Crepitus
- Decreased ROM
- With rotator cuff tear, less active than passive ROM
- X-Rays
 - Decreased joint space
 - Osteophytes
- 4Myrick, K (2016)

Adverse Outcomes

- Chronic shoulder pain
- Severe loss of strength and motion

Treatment


- Non-operative
 - NSAIDS
 - PT
 - Corticosteroid injections
- Operative
 - Shoulder replacement

Referral Red Flags

• No improvement with conservative measures

Instability

Instability

- Classified by frequency of symptomatic episodes, as well as direction and degree of instability
- Episode can be partial, or complete
- Most traumatic dislocations are anterior
- Multidirectional instability

Definition / Background

- Mobile joint
- Anterior most common
- TUBS (Traumatic, Unidirectional, Bankart, Surgical)
- AMBRI (Atraumatic, Multidirectional, Bilateral, Rehab, Instability)

Clinical Symptoms

- Sensation of shoulder slipping out of joint
- Abduction external rotation

Tests

- Physical Examination
 - Apprehension sign
 - Generalized laxity
- Diagnostic Tests
 - X-rays
 - MRI
 - MRI arthrogram

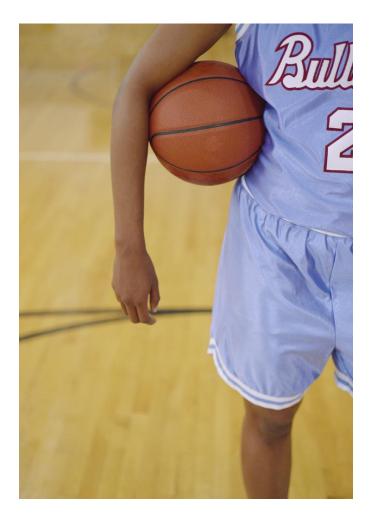
Adverse Outcomes

- Axillary nerve injury
- Risk of recurrent instability

Treatment

• PT

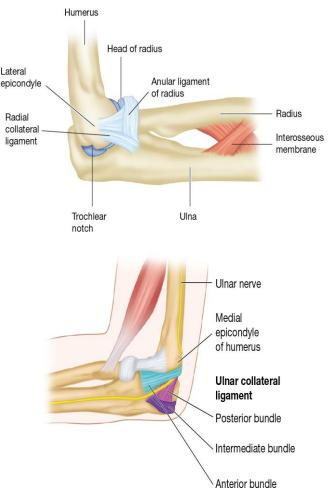
 Strengthen periscapular muscles



Referral Red Flags

- First time traumatic dislocators
- Athletes

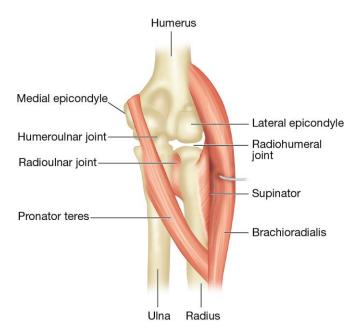
Elbow Forearm Hand



OVERVIEW OF ANATOMY AND PHYSIOLOGY OF THE MUSCULOSKELETAL SYSTEM

• THE ELBOW

• Function


- The elbow functions to position the hand in space and stabilize the lever action of the forearm.
- Bones and Ligaments
 - The humerus, radius, and ulna bones of the forearm complete the hinge joint articulation of the elbow joint at three articulations: the humeroulnar joint, the radiohumeral joint, and the radioulnar joint.
 - \odot Bones and ligaments of the elbow.

OVERVIEW OF ANATOMY AND PHYSIOLOGY OF THE MUSCULOSKELETAL SYSTEM

• THE ELBOW (CONT'D)

- Muscles and tendons
 - The muscles and tendons that comprise and move the elbow are the biceps and brachioradialis, the brachialis, the triceps brachii, the pronator teres, the pronator quadratus anoconeus, and the supinator
 - The olecranon bursa is a thin sac of synovial fluid that cushions the olecranon process, helping the soft tissue structures to glide and move freely.

Elbow pain in the skeletally immature patient

• Osteochondral defect

• Medial epicondyle apophysitis

History

- 7 attributes
- Activities

Imaging

• Comparison views?

Medial epicondyle apophysitis (Little Leaguer's Elbow)

Osteochondral defect (Panner's disease)

Location of Pain

- Lateral Elbow
 - Extensor origin of the muscles
 - Tennis elbow
 - Exacerbated by forearm supination and wrist extension against resistance
 - Lift chair with forearm pronated = pain, same test with forearm supinated = no pain

Location of Pain (Cont.)

- Medial Elbow
 - Usually one of two:
 - Ulnar nerve entrapment
 - Medial epicondylitis (golfers elbow)
 - Ulnar nerve
 - Cubital tunnel

Stiffness

- Normal elbow range of motion is 0 to 150 of flexion
- Normal forearm rotation is from 80 of pronation to 80of supination
- Predisposition to stiffness!
- Functional ROM 30 to 130, and 50 of pronation and supination

Physical Examination

Inspection and Palpation

- Anterior view
 - Swelling and ecchymosis
 - Carrying angle
 - Biceps tendon

Inspection and Palpation (Cont.)

- Lateral View
 - Effusion
 - Pain with palpation over laterial epicondyle
 - Lateral epicondylitis

- Medial View
 - Pain and tenderness just distal to medial epicondyle
 - Medial epicondylitis
 - Palpation and light percussion with paresthesias to p 4 and p 5
 - Ulnar nere entrapment

- Posterior View
 - Fullness over olecranon
 - Olecranon bursitis
 - Fullness above olecranon with hx of trauma or overuse
 - Olecranon fracture

Range of Motion

- Flexion Extension, Zero Starting Point
 - Children begin in hyperextension
 - 0 to 150
- Expression of limited ROM
 - "Elbow flexes from 30 to 90, or the elbow has a flexion contracture of 30 with further flexion to 90"

Range of Motion (Cont.)

- Forearm Rotation
 - Measure by stabilizing the arm against the chest wall and flexing the elbow to 90
 - Zero starting point is with thumb aligned with the humerus
 - 50 and 50

Muscle Testing

- Resisted Flexion
 - Maximum effort to flex supinated forearm
 - Tests flexors, especially biceps
 - Weakness
 - Biceps tendinitis or rupture
 - C5 C6 nerve roots

Muscle Testing

- Resisted Extension
 - Extensors of the elbow, primarily the triceps
 - Resist maximum effort to extend elbow with forearm in neutral position
 - Weakness with triceps tendinitis or rupture, or C7 or C8 nerve root lesions

- Resisted Supination
 - Test forearm supinators, biceps most powerful
 - Grasp forearm and resist patients maximal effort to turn palm up
 - Weakness with rupture or tendinitis of the biceps at the elbow, subluxation of the biceps at the shoulder, lesion of C5 C6
 - Pain with lateral epicondylitis

- Resisted Pronation
 - Forearm pronator strength
 - Grasp distal forearm, and resist pts effort to turn palm down
 - Weakness with rupture of pronator at origin of medial epicondyle, fracture of medial elbow, or lesions involving median nerve or C6 and C7
 - Pain with medial epicondylitis

- Resisted Wrist Flexion
 - Keep wrist flexed while you try to extend
 - Weakness with muscle rupture, medial elbow fracture, lesions of ulnar nerve C8 and T1, or median nerve C6 and C7
 - Pain with medial epicondylitis

- Resisted Wrist Extension
 - Ask patient to hold in extension, push into flexion
 - Weak with rupture of extensor origin, fracture of lateral elbow, lesion of radial nerve or C6 to C8
 - Pain with lateral epicondylitis

Tests

- Physical examination
 - ROM
 - Bony point tenderness
 - Swelling
 - Ecchymosis
- Diagnostic tests
 - X-rays
 - Comparison views
 - Fat pad and sail sign
 - Don't miss radial head fxs!

Adverse Outcomes

- Growth disturbance
- Malunion
- Nonunion

Treatment

• Minimal immobilization

Referral Red Flags

 Most elbow fractures should be seen in consultation

Forearm Fractures

Background / Definition

- Distal third most common
- 20-40% all pediatric fractures
- Distal forearm uncommon before 4
- After age 10, fractures involving the growth plate more common

Clinical Symptoms

- FOOSH
- Pain
- Swelling
- Deformity

Tests

- Physical Examination
 - Bony point tenderness
 - Neurovascular status
 - Open fractures
- Diagnostic Tests
 - 3 views
 - Comparison views

Adverse Outcomes

- Reangulation
- Synostosis
- Growth arrest

Referral Red Flags

- Neurovascular compromise
- Angulation greater than 10-15
- Athletes
- Snuff box tenderness

Treatment

- Most closed
- Considerable remodeling
- Loss of rotational alignment only absolute indication for reduction and remanipulation

Hand

Overview

- Carpal tunnel syndrome, trigger finger, ganglion, CMC arthritis of the thumb, and fractures = most common hand and wrist problems in primary care
- History
- Handedness

Pain

- Location 1 finger
 - Radial pain
 - Younger than 30 usually trauma
 - Posttraumatic tenderness
 - Radial styloid de Quervains
 - Finkelsteins
 - Intersection syndrome
 - Tenosynovitis of the radial wrist extensors
 - CMC arthritis
 - Pain base of thumb over 40
 - Grind test

Pain (Cont.)

- Dorsal
 - Radiocarpal arthritis
 - Associated with mass
 - Ganglion
 - Kienbock disease
 - Osteonecrosis of the lunate

Pain (Cont.)

- Volar
 - CTS
 - Numbness and tingling in radial three digits
 - Ganglion
 - Associated with mass
 - Tenosynovitis

Swelling

- Synovitis
 - Secondary to OA, infection, systemic inflammatory disease (RA, Gout)
 - History of trauma?

Weakness

- May be secondary to pain
- Without pain, suggestive of peripheral nerve entrapment
- Wasting of intrinsic muscles
- Ulnar nerve entrapment at the elbow will result in decreased grip and pinch strength and loss of sensation in p 4 and p 5

Numbness

- Median, ulnar, radial distribution
- Note provocative signs
 - Tinel
 - Phalen
 - Elbow compression test
- RULE OUT THE NECK!

Physical Examination

Inspection / Palpation

- Dorsum
 - Observe the alignment of the fingers
 - Look for swelling and synovitis
 - Note osteophytes or bony prominences
 - Muscle atrophy

• Palm

- Atrophy of thenar muscles
 - median nerve innervated
- Atrophy of hypothenar muscles
 - Ulnar nerve innervated
- Note thickening of the palmar fascia
 - Dupuytren contracture
- Pain over thumb MP joint
 - Arthritis or instability

- Side View
 - Palms facing eachother to visualize atrophy of thenar muscles
 - Joint swelling

- Wrist flexion / extension zero starting position
 - Normal palmar flexion 75 to 80
 - Normal palmar extension 75-85

- Wrist radial / ulnar deviation
 - Radial deviation 20 to 25
 - Ulnar deviation 35 to 40

- Finger flexion / extension
 - Finger joint motion occurs primarily in flexion extension plane, with flexion accounting for most finger joint motion

Range of Motion

- Thumb opposition
 - Test tip of thumb to middle finger
- Thumb flexion / extenion

Muscle Testing (Cont.)

- Thumb abduction strength
 - Hand on table
 - Ask pt to abduct thumb
 - Resist your attempt to push it down to the table (abduction and extension)
 - Weakness indicates damage to motor branch of median nerve

Sensory Testing

- Median, ulnar and radial nerves
 - Median
 - Tip of thumb
 - Ulnar
 - Tip of small finger
 - Radial
 - Dorsum of thumb metacarbal

Sensory Testing (Cont.)

- Tinel
 - Lightly percuss the median nerve at the wrist flexion crease in line with the metacarpal of long finger
 - Reproductions of paresthias into the median nerve distribution is +

Sensory Testing (Cont.)

- Finkelstein
 - Test for de Quarvain tenosynovitis
 - Make fist, thumb inside fingers
 - Wrist into ulnar devaition
 - Pain = +

Sensory Testing (Cont.)

- Phalens
 - Test for CTS
 - Sharp flexion of wrists
 - Reproduction of symptoms before 60 seconds = +

Metacarpal and Phalangeal Fractures

Background / Definition

- Metacarpal fractures are more common with growth plate closure
- Phalangeal fractures are more common in children

Clinical Symptoms

- History of trauma
- Pain
- Deformity
- Swelling
- Ecchymosis

Tests

- Physical Examination
 - Swelling over fracture site
 - Depressed knuckle
 - Bony point tenderness
 - Rotational deformity
 - Neuro vascular exam
- Diagnostic Tests
 - X-rays

Adverse Outcomes

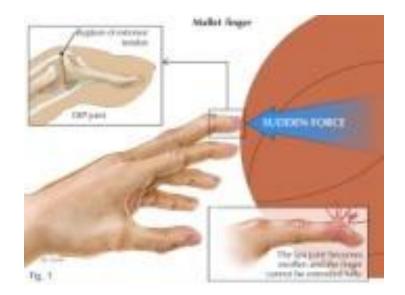
- Malunion
- Nonunion
- Growth arrest
- Loss of motion

Treatment

- Metacarpal neck fracture
 - 10, 20, 30, 40
- Nondisplaced fractures metacarpal and phalangeal shafts
 - 3-4 weeks casting or splinting
 - Include joint above and below
 - Early ROM to prevent stiffness

Referral Red Flags

- Displaced fractures
- Dominant hand
- Athletes
- Intra-articular


Mallet Finger

©MMG 2001

Background / Definition

- Deformity caused by rupture, laceration or avulsion of the insertion of extensor tendon at base of distal phalanx
- Common in baseball, basketball

Clinical Symptoms

• Inability to straighten the finger tip

Tests

- Physical Examination
 - DIP joint in flexion
 - Patient unable to actively extend the joint
 - Passive extension possible
 - Not very painful
- X-rays
 - Rule out "bony" mallet

Adverse Outcomes

• Permanent flexion of the DIP

Treatment

- Continuous splinting of the DIP in extension is critical to restoring full function
- Can be volar or dorsal
- Acute splint 6 weeks

Referral Red Flags

- Volar subluxation of the distal phalanx
- Bony mallet
 - Avulsed fragment
 - Involves more than 1/3 of the joint surface

References

- ¹Kamimura, M., Umehara, J., Takashi, A., Aizawa, T., and Itoi, E. (2015). Medial meniscus tears morphology and related clinical symptoms in patients with medial knee osteoarthritis. *Knee Surgery, Sports Traumatology, Arthroscopy, 23 (1).* 158-163.
- ²Koh, L., Steward, C. (2014). Patellar Instability. Clinics in Sports Medicine. 33 (3), 461-476
- ³Beynnon, B., Vacek, P., Newell, M, Tourville, T, Smith, H, Shultz, S, Johnson, R (2014). The effects of Level of Competition, Sport and Sex on the Incidence of First-Time Noncontact Anterior Cruciate Ligament Injury. *The American Journal of Sports Medicine*, 42 (8), 1806-1812.
- ⁴ Myrick, K. (2016). Orthopedic and Sports Medicine Case Studies for Nurse Practitioners. Springer Publishing, New York.
- ⁵ Felder J, and Mair, S (2015). Acromioclavicular joint injuries. Current Orthopedic Practice. 26 (2), 113-118 6p.
- ⁶ Bendre, Anup, Hartigan, B, Kalinov, D. Mallet finger. Journal of the American Acadamy of Orthopedic Surgeons. 13.5 (2005). 236-344 s.
- ⁷ Myrick, K., Nissen, C. (2013). THIRD Test: Diagnosing Hip Labral Tears With a New Physical Examination Technique. Journal for Nurse Practitioners. 9 (8).
- ⁸ Dubin, A. (2016). Managing Osteoarthritis and Other Chronic Musculoskeletal Pain Disorders. Medical Clinics of North America, (100), 143-150.
- ⁹Brown J, DeLuca S. Growth plate injuries: Salter-Harris classification. American Family Physician. (1992). 46 (4): 1180-4.

