FLAT TIRES AND BUSTED SHOCKS: FOOT AND KNEE PROBLEMS IN THE NOT SO YOUNG ADULT

Our <u>Orthopaedic Lecture Series</u> is meant to jump-start the educational process, it does not ensure that the healthcare provider is proficient in the skills or has mastered the referenced educational material associated with each lecture. Such skill proficiency and enhanced knowledge base comes with the collaboration of self-directed learning, academic enhancement and workplace experiences under physician supervision and guidance. Orthopaedic Educational Services, Inc. does not endorse that the viewer of such educational material has mastered this content.

LEARNING GOALS

At the end of this session you will be able to:

Describe and Interpret normal plain radiographs for the foot

- Describe, Evaluate and Treat Osteoarthritis of the Knee
- Describe, Evaluate and Treat Plantar Fasciitis
- Describe, Evaluate and Treat Retrocalcaneal Bursitis/Tendonitis
- Describe, Evaluate and Treat Posterior Tibial Tendonitis/Dysfunction
- Describe, Evaluate and Treat 5th Metatarsal base fractures

Title: Foot and Knee Problems in the not so young Adult

Author: Tom Gocke, DMSc, ATC, PA-C, DFAAPA

Editor-in-Chief,

President & Co-Founder

Orthopaedic Educational Services, Inc

Updated: April 1, 2020

Faculty Disclosures

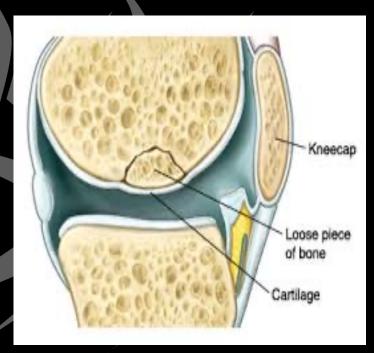
Orthopaedic Educational Services, Inc.

Financial
Intellectual Property
No off-label product discussions

American Academy of Physician Assistants

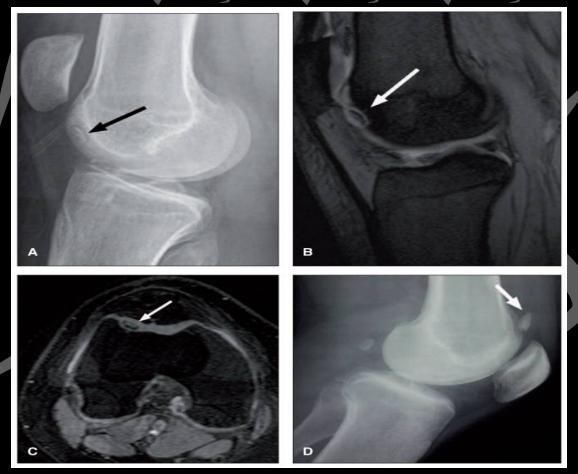
Financial Splinting/Casting Workshop Director, Guide to the MSK Galaxy Course

- JBJS- JOPA Journal of Orthopaedics for Physician Assistants- Associate Editor
- Americian Academy of Surgical Physician Assistants Editorial Review Board
- Associate Professor, Rocky Mountian Univerity of Health Professions Financial


OSTEOCHONDRAL INJURIES

- Articular surface injury involving hyaline articular cartilage and/or subchondral bone
 - Repetitive stress to knee causes disruption to bone & blood supply
 - Weakness in articular cartilage & shear forces gradually dissects articular cartilage from subchondral bone
- Clinical presentation & symptoms variable
 - Juvenile
 - Adult
- Knee (most common)
 - 70% knee lesions medial femoral condyle(MFC)
 - Posterolateral
 - Complete detachment = loose body

- Occurs female > male
- Usual onset idiopathic
- Possible contributing Factors
 - Corticosteroid use (oral vs. injected)
 - Renal Transplant
 - Sickle Cell
 - Smoking
 - Altitude
 - SCUBA
 - Systemic Lupus Erythema
 - IV drug uşe
 - Heredity



Google Image

- Radiographs
 - Wt-bearing AP, lateral & notch (tunnel, Rosenberg)
 - Knee bent 30-50 degrees-better visualize femoral notch
 - Lesion most often seen MFC posterolateral aspect
- MRI
 - Synovial fluid behind the lesion on MRI correlates with a worse prognosis
 - Better identifies:
 - Lesion size
 - Staging OCD lesion
 - Signal intensity of lesion
 - Loose bodies

Google Image

Acute Injury

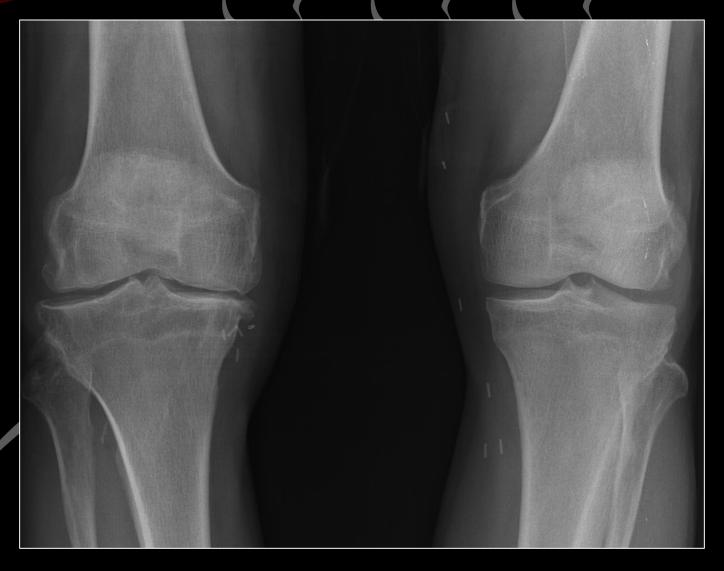
- Immediate Treatment
 - ICE
 - Knee Aspiration:
 - pain control
 - Fat droplets indicative of osteochondral injury
 - Knee Immobilizer patient comfort
 - Wear as needed
 - Remove Daily
 - skin care
 - protected bathing (consider age and patient abilities)
 - Assisted Ambulation
 - Crutches vs. Walker vs. Wheel-chair
 - Weight-bearing status surgeon preference
 - Pain management

OSTEOARTHRITIS

- General
 - Most common form arthritis
 - Knee most often involved
 - Can affect other joints
 - Advanced age > younger age
 - Men=Women
 - Immobility stiffness
 - Non-inflammatory arthritis
 - Primary: native defect
 - Secondary: due to trauma, infection
 - Chondrocytes unable to repair following injury

- General
 - Progression of osteoarthritis
 - Deterioration hyaline articular cartilage
 - Leads to loss of cartilage on bearing surface.
 - Osteophyte development
 - osteochondral junction breakdown
 - Interface between hyaline cartilage and bone surface lost
 - cartilage breakdown
 - subchondral microfractures
 - subchondral cyst formation
 - 2nd to increased pressure of synovial fluid over production

- Arthritis knee
 - Osteoarthritis: age and activity related
 - Rheumatoid arthritis: autoimmune disease
 - Post traumatic Arthritis: injury related
 - Delayed onset
 - Similar symptoms
 - Variable treatments
 - Similar outcomes



Radiographs

- X-ray views
 - Standing AP, Lateral, Rosenberg and sunrise
 - Findings
 - Joint space narrowing
 - Eburnation of bone
 - Subchondral sclerosis
 - Subchondral cysts
- MRI
 - Not necessary to determine amount of osteoarthritis
 - Meniscal and OCD pathology can still occur in the pt with knee arthritis

KNEE OSTEOARTHRITIS-MODERATE

KNEE OSTEOARTHRITIS MODERATE TO SEVERE

KNEE OSTEOARTHRITIS - SEVERE

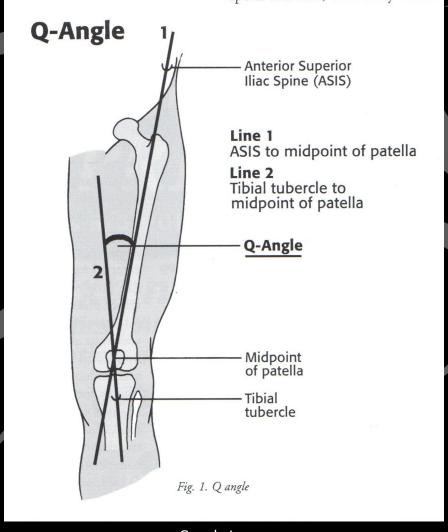
KNEE OSTEOARTHRITIS-SEVERE

- Treatment Nonoperative
 - NSAIDS
 - Reduce inflammatory effects & pain reduction
 - Acetaminophen pain relief no anti-inflammatory effects
 - Physical Therapy
 - Improve gait
 - Unloading braces: ? improve alignment and gait
 - Improve strength & flexibility
 - Structured programs
 - Injection therapy
 - Corticosteroid joint injections
 - Viscosupplimentation joint injections
 - no strong evidence to support

- General
 - Softening/fissure of hyaline articular cartilage
 - Overload Patellofemoral joint
 - Disuse & overuse can contribute to condition
 - Women > Men
 - Ages 15-18 & 35-45
 - Patella Alta contributes:
 - Increased Risk patella dislocation/subluxation
 - Abnormal Trochlear anatomy

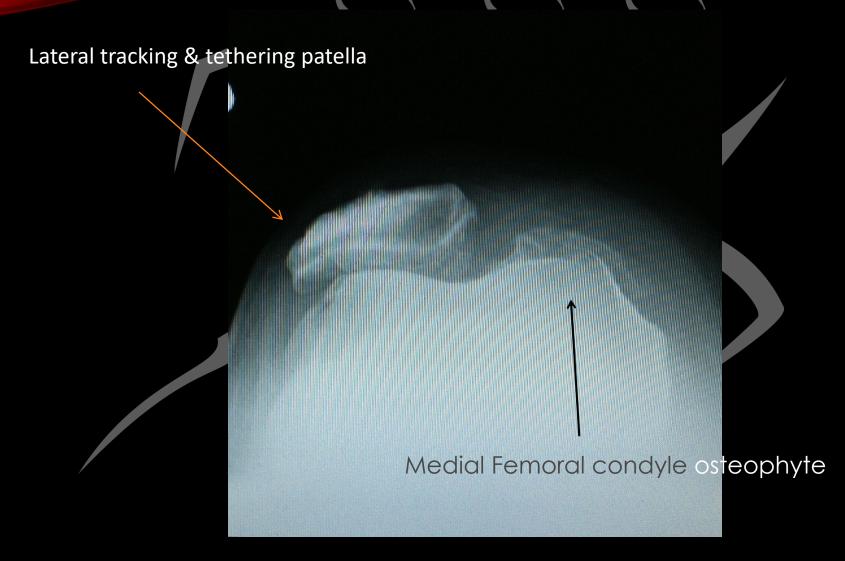
- Stages of Chondromalacia
 - Stage I: swelling & softening hyaline articular cartilage
 - Stage II: fissure develops within damages areas
 - Stage III: disruption hyaline articular cartilage to subchondral bone
 - Stage IV: destruction hyaline articular cartilage with exposed bone
 - All stages best determined at time arthroscopy

- Contributing Factors
 - Weak quads
 - Tight hamstrings, quads & hip flexors
 - Increased Q angle
 - Patella Alta
 - Shallow Femoral groove
 - Genu valgum
 - Pes Planus
 - Weak glutes



- Clinical Symptoms
 - Anterior knee pain
 - Usually relieved with extending knee
 - Temporary relief of symptoms
 - Pain with prolonged sitting, stair climbing, kneeling or squatting
 - Movie Sign
 - Crepitation
 - Felt & heard with active knee flexion & extension
 - Not always a sign of injury severity

- Physical Exam
 - General Knee Exam
 - Patellofemoral (PF) Specific exam
 - Tracking
 - Lateral tracking indicates increased PF symptoms/problems
 - Mobility
 - Hypermobile patella indicative of increased chance of PF problems
 - Tethering
 - Tight lateral patellar structures compress the lateral patella facet
 - Q angle
 - Large Q angles lead to increased PF symptoms
 - Tibial Torsion, Femoral Anteversion, Foot Pronation



Google Image

- Radiographs
 - AP & Lateral: weight bearing over age 40-45
 - Sunrise, Merchant, Tangential
 - Helps delineate PF alignment
 - Look for shallow Femoral Trochlea
 - Lateral patellar facet compression

- Treatment Option
 - Non-operative:
 - Majority fall into this category
 - Change activity
 - NSAIDS and ICE
 - Avoid Open Kinetic Chain Leg Extensions
 - Increase Flexibility & Strength (VMO)
 - Decrease stresses on PF joint
 - Supportive braces (lateral buttress brace/ J brace)
 - Physical Therapy: best bet for improvement
 - MODALITIES
 - MCCONNEL / KINESO TAPING

POSTERIOR TIBIAL TENDON DYSFUNCTION

- Cause:
 - Degenerative change in the Pi
 - Occurs in area of decreased vascularization distal to medial malleolus
 - Contributing factors
 - Obesity
 - PVD
 - Diabetes
 - Spondylopathy
 - Chronic steroid use
 - Trauma
 - Pes Plano valgus (flat feet)
 - Tarsal coalitions

Posterior Tibial Tendon Dysfunction

- Physical Exam
 - Marked planus foot
 - Increased rear-foot valgus
 - Too many toes sign
 - Hindfoot valgus
 - ABD toes
 - Weak inversion
 - Unable to single toe raise on affected foot

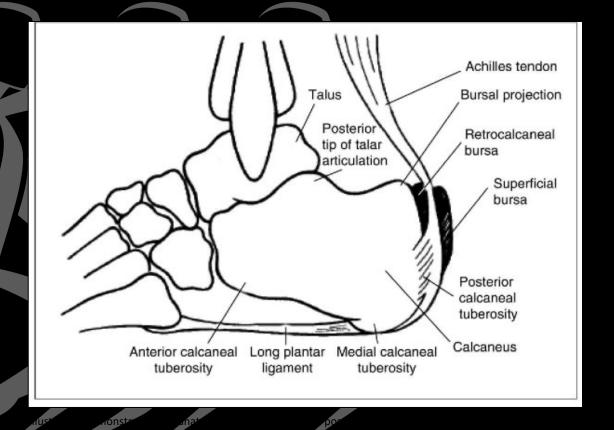


Posterior Tibial Tendon Dysfunction

Treatment:

- Recognize possibility of PTTD
- RICE
- NSAIDS
- Immobilization / orthotics
 - Removable short leg cast
- Modify activity
- Referral to Foot and Ankle specialist

General


- Starts as posterior heel pain
- AKA: Pump Bump/Achilles Bursitis
- Influencing factors:
 - Shoe wear/heel counter pressure
 - Poor hamstring/Achilles flexibility
 - Activity changes
 - Structural deformities (calcific tendonitis, Haglund)
 - Gout/RA/Seronegative Spondyloarthropathies
 - Mal-aligned sub-talar joint
 - Alters normal foot mechanics
 - Transmits more force load to Achilles tendon

Reddy SS: Surgical Treatment for Diseases and Disorders of the Achilles Tendon; JAAOS 17(1):3-14, Jan 2009

Retrocalcaneal Bursitis

Anatomy

- Achilles' tendon inserts into Calcaneous
- Calcaneous usually down sloping
 - Haglund deformity increases contact pressure of Achilles on calcaneous Dorsiflexion
- Bursa
 - Retrocalcaneal: between bone and tendon
 - Superficial: between skin and tendon

Physical Examination

- Inspection
 - Assess gait
 - Rear-foot alignment
 - Neutral-Varus-Valgus
 - Pes Planus Cayus
 - "Too many toes sign"
- Palpation tender Achilles insertion calcaneous
- ROM/Strength
 - Decreased KBDF/KEDF
 - Hind foot varus & Rigid 1st ray predisposed?
- Neuro/vascular no changes
- Ortho exam Look @ mortise & sub-talar stability

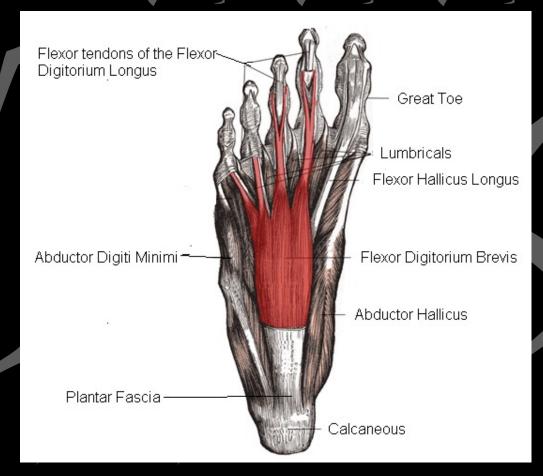
Morhopedics – Creative Common Attribution-Share Alike 3.0

Photo courtesy TGocke, PA-C

- Radiographic views
 - Ankle: AP, Lateral, Mortise (standing)
 - Foot: AP, Lateral, Oblique (standing)

Haglund Deformity

Photo courtesy TGocke, PA-C


Treatment:

- Modify activity
- Modify shoe wear/types padding/orthotics
- Improve flexibility Gastroc-Achilles complex
- NSAIDS: topical vs. oral
- Physical Therapy
 - Iontophoresis/Phonophoresis
 - Phonophoresis: Steroid driven into tissue by ultrasound
 - Iontophoresis: Electrical charge draws steroid into tissues
 - Acetic Acid: change in calcium ions reduces inflammation and reduces chance of scar tissue formation
- Surgery- excise Haglund deformity

DO NOT INJECT ACHILLES REGION WITH STEROIDS

PLANTAR FOOT

From Wikimedia Commons

- Definition: inflammation of the fascia
- "Heel spur pain"
- Plantar fascia has 3 slips.
 - Medial Central Lateral
 - Central slip arises from medial Calcaneal tuberosity
 - Inserts to 5 digits Flexor Tendons
- Primary function is for support longitudinal arches (med/lat)
- Affects women > men
- Average onset 45 yrs
- Obesity worse
- Extreme changes in activity
- Poor foot wear choices
- Poor Flexibility

Plantar Fasciitis

Symptoms:

- Pain with ambulation
- Worse in AM or after prolonged rest/sitting
 - "start-up pain"
 - Better after warming up
- Pain localized to heel region
 - Central Heel pad
 - Medial arch or heel pain
- Body size contributes
- Gait changes
- Pathophysiology
 - Micro tears in plantar fascia tendon insertion
 50% develop plantar grade heel spurs

Plantar Fasciitis

Examination

- Observe Gait
- Observe foot posture
 - Planus Hind foot valgus plantar callosities
- Assess flexibility Achilles and toe flex/ext groups
- Palpate plantar fascia
- Assess Posterior Tibial tendon integrity (strength)
- Neuro/Vascular (Tarsal Tunnel vs. Baxter's neuropathy)

- X-ray: Standing lateral
 - Traction spur considered a normal finding (arrow)
 - Not cause for Plantar Fasciitis
 - High suspicion for Calcaneal stress fracture or tumor
 - Prior to corticosteroid injection
 - Consider CT, MRI or bone scan if failed treatment
 4-6 weeks

Photo courtesy TGocke, PA-C

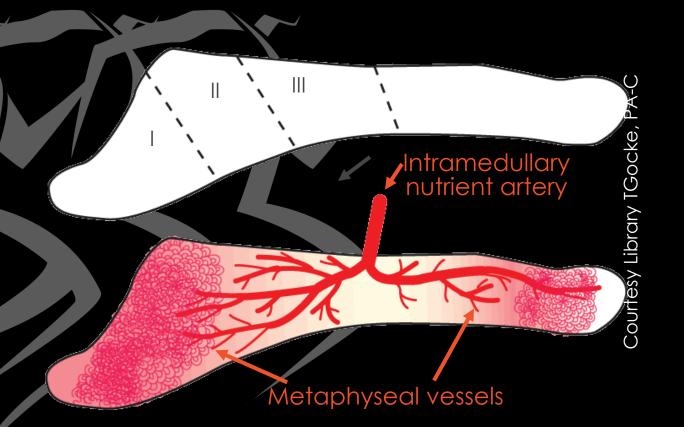
- Associated Conditions
 - Tarsal Tunnel syndrome
 - Calcaneal stress fx
 - Calcaneal bone tumor
 - Rupture of the Plantar Fascia
 - Referred pain from lumbar region
 - Posterior Tibial nerve entrapment (Baxter's nerve)

- Treatment
 - Conservative care cures most cases
 - Achilles and plantar fascia flexibility KEY
 - NSAIDS
 - ICE ("frozen plastic bottle foot massage")
 - Heel pad vs. rigid arch support
 - Immobilization (cast vs. ankle boot)
 - Night splint
 - Injection
 - Surgery last resort
 - failed after 6 months

Calf/Gastroc Stretch

Toe Flexor stretch

Plantar fascia massage



- Anatomic location important in description of fx and treatment options
- Blood supply comes from central intramedullary nutrient vessel and surrounding joint capsule, muscle and tendon attachments.
- Strong ligament structures @ 4th-5th MT plantar and dorsal dissipate forces
- Fx 2nd to inversion traction force and pull from apposing Peroneus Brevis tendon

5TH METATARSAL FRACTURES

- 3 Zones base 5th MT
- Zone I- articular surface for the metatarsocuboid joint
- Zone II articulation of the 4th and 5th metatarsals (Jones Fracture)
- Zone III extends 1.5 cm distal to zone II

Zone I

- Most proximal and is considered the base of the 5th MT
- Peroneus Brevis and lateral cord of plantar aponeurosis
- Fx starts lateral cortex and extends medially into the metatarsocuboid joint
- Good healing associated w/ Zone I injuries
- X-ray > 3mm dorsal displacement may need surgical fixation
 - Symptoms subside long before healing seen on x-ray
 - Asymptomatic non-union not uncommon

Zone II

- More distal part tuberosity
- Strong ligament attachment dorsal / plantar for 4th-5th MT
- Fx this area extend into articulation of 4-5 MT
- More painful than zone I injury
- Symptoms dependent on activity level
- No improvement on healing WBAT vs. non-Wt-bear
 - Recommendation for 2-4 wks. Non-wt.-bearing initially then WBAT
- Higher incidence asymptomatic non-union

Zone III

- Most often assoc w/ stress fx mechanism
- Fx distal to ligament attachment binding 4/5 MT
- Slow healing- poor metaphyseal blood supply
- Slow Response to conservative measures
 - SLC NWB 4-6 weeks w or w/o Bone Stimulator
 - Surgical intervention
 - Intramedullary 4.5 cancellous lag screw
 - Non-union may need grafting
 - SLC 4-6 wks

FIFTH METATARSAL FRACTURES

Fifth metatarsal base fractures are common fractures usually seen after acute inversion ankle injuries.

Radiographically, the **apophysis** appears as longitudinal line parallel to the long axis of the **fifth metatarsal**, whereas avulsion **fractures** usually have a transverse orientation. May 15, 2014

REFERENCES

- Petersen W, Ellermann A, Gösele-Koppenburg A, Best R, Rembitzki IV, Brüggemann GP, Liebau C. Patellofemoral pain syndrome. Knee Surg Sports Traumatol Arthrosc. 2014 Oct;22(10):2264-74. doi: 10.1007/s00167-013-2759-6. Epub 2013 Nov 13.
- Hsu H, Siwiec RM. Knee Osteoarthritis. [Updated 2020 Jun 29]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507884
- Wheelless C, Chondral and Osteochondral Injuries of the Knee, Wheeless Online, https://www.wheelessonline.com/joints/chondral-and-osteochondral-injuries-of-the-knee/, accessed May 2020
- Buchanan BK, Kushner D. Plantar Fasciitis. [Updated 2020 Jun 7]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK431073/

REFERENCES

- Stephens MM. Haglund's deformity and retrocalcaneal bursitis. Orthop Clin North Am. 1994 Jan;25(1):41-6. PMID: 8290230.
- Bubra PS, Keighley G, Rateesh S, Carmody D. Posterior tibial tendon dysfunction: an overlooked cause of foot deformity. *J Family Med Prim Care*. 2015;4(1):26-29. doi:10.4103/2249-4863.152245
- Smidt KP, Massey P. 5th Metatarsal Fracture. [Updated 2021 Apr 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK544369/